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Abstract. A renormalisation group method for calculating the localisation length of coupled 
disordered chains is described. A system consisting of two chains with weak interchain 
coupling is studied numerically using the method. The results indicate that the localisation 
length has a strong dependence on the interchain coupling. The localisation length is gen- 
erally increased by weak interchain coupling if the two chains have about the same disorder 
strength, while it decreases with increasing interchain coupling if the difference between the 
disorder strengths of the two chains is large. 

1. Introduction 

One-dimensional (ID) disordered systems are of particular interest in connection with 
the study of localisation because some rigorous results are available in these systems. 
The interest in ID systems has also increased remarkably with the synthesis and thorough 
investigation of a wide class of quasi-ID materials over the last decade. The most 
important result for ID systems is that all the eigenstates are localised for any disorder 
(Mott and Twose 1961, Borland 1963, Ishii 1973). However, we should keep in mind 
that there is no rigorous ID material. Interchain coupling exists in all quasi-iD systems, 
although it may be very weak. It is now well known that the weak transverse coupling 
plays an important role in phase transition problems (see Firsov et aZ1985). However, 
the weak interchain coupling is ignored in most of the theoretical works on localisation. 
The problem of how far the weak interchain coupling affects the localisation in quasi-ID 
disordered systems is still unsolved. 

In recent years, both analytical works (Pendry and Castano 1988, Markos 1988) and 
numerical methods (Pichard and Sarma 1981, Mackinnon and Kramer 1981, Zheng 
1986) have been developed to study the localisation in coupled disordered chains. In 
this paper we extend the renormalisation group (RG) method proposed by Robbins and 
Koiller (1985) for calculating the localisation lengths of a single isolated disordered chain 
to multichain systems. Using this method we have calculated the localisation lengths of 
a two-chain system with weak interchain coupling. Our numerical results show that, 
although the weak interchain coupling does not change the fact that all eigenstates are 
localised for arbitrarily small non-zero disorder, it can have various effects on the 
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localisation length. For the case when the two chains have about the same disorder 
strengths, the weak interchain coupling generally increases the localisation length. 
However, the localisation length decreases with increasing interchain coupling when the 
difference between the disorder strengths of the two chains is large. 

2. Method 

Since Goncalves da Silva and Koiller (1981) introduced the RG method to study the 
spectra of mass disordered chains, the method has been successfully used in studying 
the densities of states of ID disordered systems (Koiller et a1 1983, Robbins and Koiller 
1983, Langlois et a1 1983, Liu et a1 1984, Makler et a1 1985, Hwang et a1 1986, Tan and 
Yang 1988). In most of these works, the local Green functions are obtained by asserting 
that the rescaling process commutes with the configuration average. The RG method has 
also been extended to study the densities of states of a Bethe lattice (D’Albuquerque e 
Castro 1984), Husimi cacti (Anda et a1 1984), coupled chains (Liu and Chao 1986) 
and a square lattice (Yang and Tan 1989). Similar methods have been used to study 
incommensurate systems (Jose 1983, Wiecko and Roman 1984). Robbins and Koiller 
(1985) have derived a formula for obtaining the localisation length of a single chain from 
the RG recursion relation. The formula is exact if the rescaling process is carried out for 
a long chain with no configuration average. Here we will follow a similar line to Robbins 
and Koiller (1985) to investigate the localisation length of coupled chains using the RG 
technique with no configuration average. 

We consider an infinite strip consisting of M chains, defined by the Hamiltonian 
m 

H = 2 ( H ( z )  + H(Z, z + 1) + H(Z, z - 1)) (1) 

(2  - H(Z))G(Z, J )  = 6(Z, J) + H(Z, Z - l)G(Z - 1 , J )  + H(Z, Z + 1)G(Z + 1, J )  

where G(Z, J) is a M X M matrix defined as 

( 5 )  

Gi,j(Z, 1) = (i, ZIGIJ, 1). (6) 
Equation ( 5 )  has exactly the same form as that for a single chain obtained by Koiller et 
a1 (1983). Therefore, it is easy to get the RG recursion relation by using the cluster 
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decimation technique (Liu et a1 1984, Makler et a1 1985, Liu and Chao 1986, Yang and 
Tan 1989) 

(2 - Hck)(Z))G(k)(Z, J )  = 6(Z, J) + H(k)(Z,  I - l)G(k)(Z - 1, J )  

+ H@)(Z, I + l)G@)(Z + 1,J) I =  - C O , .  . * )  -l,O, 1 , .  . . )  CO 

( 7 )  

with 

H(k+l)(Z) = H(kl(21) + H(kl(21, 21 - 1)(Z - H(kI(21- l))- 'HyZI - 1 , 2 4  

H(k+1)(1, I + 1) = H(k)(21,21+ 1) (2 - H(k)(21+ l))-lH@)(21 + 1,21+ 2) 

G@+l)(Z, 1) = Gck)(21, U )  

+ H(4(21,21+ 1) (2 - H(k)(21+ 1 ) ) - 1 H q 2 1  + 1 , 2 4  (8) 

(9) 

(10) 

where the superscript k denotes the number of renormalisations. Using equations (7) 
and (10) we can get 

G(2k, 0) = G@)( l ,  0) = (2 - H@)(l))- lH@)(l ,  O)G@)(O, 0) 

+ (2 - H(k)(l))-1H(k)(17 2)G(k)(2, 1). (11) 

As kincreases, 1,O) and@)( 1 , 2) tend to zero at about the same rate, and G"(2, 1) 
also tends to zero. G@)(O, 0) is generally a non-zero matrix. Hence, for enough large k 
the last term in equation (11) is negligible and then we have 

for large k. (12) G(2k, 0) = (2 - H ( k ) ( l ) ) - - 1 H ( k ) ( 1 7  O)G(k)(O, 0) 

The localisation length of the coupled chains can be defined as (Economou 1983) 
M \ - 1  

i =  1 
]= 1 

k- - 
Substituting equation (12) into equation (13) and considering the fact that, at the 

fixed point, Hck)(l ,  0)+ 0 while (Z  - H@)(l))-' and Gck)(O, 0) are finite constant 
matrices except for a set of measure zero where det(2 - H(")(Z)) = 0 (see figure l), the 
localisation length can be expressed in the form 

M 

3. Numerical results 

In order to study the effect of weak interchain coupling on the localisation of quasi-iD 
disordered systems, we have calculated the localisation lengths of a system consisting 
of two chains by using the RG method. We believe the two-chain system is a good 
approximation of a quasi-iD system in the weak interchain coupling limit. 
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Figure 1. The convergence of the localisation 
length at E = 0 of a two-chain system with W1 = / ' " ' I , ' , .  

We assume that the system is pure diagonal disordered. The distribution of the site 
energy is described by a distribution function 

The nearest neighbour intrachain hopping is 

and the interchain coupling is 

Vl,2(A 0 = V2,l(I,1? = CT. (17) 

Before presenting the numerical results, we should point out that, although equation 
(14) is exact only in the limit k - 4  m, the practical calculations are performed with finite 
k values. The localisation lengths calculated for different samples are widely dispersed 
when k is small. However, the dispersion of the results becomes weaker and weaker as 
k increases, as shown in figure 1. Therefore, a well defined localisation length can be 
obtained with enough large k.  In our calculation, we have taken 2k - 1OOOL. 

We have first considered the case when the two chains have the same disorder 
strength, i.e. W1 = W2 = 2. Figure 2 shows the localisation length of the two-chain 
system against energy for interchain coupling strength U = 0.1, compared with the 
results for a single isolated chain with disorder strength W = 2. Since the localisation 
length is symmetric in energy about E = 0, only results for positive energies are shown. 
It can be seen that the localisation length of the coupled chains is greater than that of 
the single isolated chain within the whole band. We can also see that there appear two 
peaks for the values of localisation length of the two-chain system near the band centre 
E = 0. This is different from the single-chain case, for which there appears only one 
peak at E = 0. 

Figure 3 shows the interchain coupling dependence of the localisation length of a 
two-chain system with W1 = W2 = 2 calculated for different energies. As is seen from 
the figure, in the weak coupling case ( U  S 0.1) the localisation length increases drast- 
ically with increasing interchain coupling strength for all calculated energies. This 
suggests that the localisation length of the quasi-iD disordered system is very sensitive 
to weakinterchain coupling. However, after reaching a maximum, the localisationlength 
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Figure 2. The localisation length as a function of energy for a two-chain system with W1 = 
W2 = 2 and U = 0.1 (upper curve), compared with that for a single chain with disorder 
strength W = 2 (lower curve). 

Figure 3. The interchain coupling dependence of 
0.1 0.2 0.3 0 . 4  the localisation length for a two-chain system with 

w1= w2 = 2. 

10 

U 

decreases with increasing coupling strength. It is easy to understand this phenomenon if 
we consider the following facts: the two-chain system is a good approximation of the 
quasi-iD system only for the very weak interchain coupling case. The energy band of 
the two-chain system becomes wider and wider as the interchain coupling strzngth is 
increased. It can split into two bands symmetric about E = 0 for large enough interchain 
coupling and the energy range near E = 0 may lie in the band gap. Hence, we think this 
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Figure4. The localisation length at E = 0 of a two- 
chain system with W1 = W2 = 2 plotted against 
W1, for U = 0 1 (0) and 0 01 (A) The local- 
isation length at E = 0 for a single isolated chain 
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decrease is a two-chain effect which does not occur in systems consisting of an infinite 
number of chains. 

We have also examined a system consisting of two chains with different disorder 
strengths, i.e. W1 # W2. Taking W2 = 2, we have calculated the localisation lengths of 
the system for various values of W1 and U. The results are shown in figure 4. It is seen 
that the weak interchain coupling increases the localisation length only in the parameter 
region W1 W2. For the cases W1 < W2 and W2 6 W1, however, the localisation length 
decreases with increasing interchain coupling. The localisation length is not sensitive to 
the coupling strength in the case W1 s=- W2. As W1-+ x ,  obviously, the localisation 
length of the system converges to a constant LO, regardless of the interchain coupling 
strength. LO equals the localisation length of a single chain with disorder strength W = 
2 at E = 0. We can also see in figure 4 that the effect of the interchain coupling is very 
important in the case W1< W2. This importance can be seen more clearly by considering 
the transport property of a two-chain system with W1 = 0 and W2 # 0. If there is no 
interchain coupling, the two-chain system has a finite conductance because chain 1 
provides a non-scattering channel for the electrons (Anderson et a1 1980). However, if 
interchain coupling exists, arbitrary non-zero small interchain coupling can introduce 
the random scattering of chain 2 into chain 1 and causes all states in the system to be 
localised. Hence, the conductance of the system tends to zero as the length of the sample 
goes to infinity. 

Another interesting problem is how the interchain coupling affects the localisation 
length of a quasi-iD disordered system if the interchain coupling matrix element is also 
a random variable. In order to give a preliminary answer to the question we have 
considered a two-chain system with W1 = W2 = 2, and V1,*(Z, Z) = V2,1(Z, Z) = U(Z),  
where U(Z) is a random variable described by a distribution function 

P( U(Z)) = 1/uo 0 G U(I)  s uo. (18) 

We have calculated the U0 dependence of the localisation length of the system and the 
results are shown in figure 5 .  We can see that the results shown in figure 5 are similar to 
those shown in figure 3. In the weak interchain coupling case, the localisation length of 
the two-chain system increases with increasing interchain coupling strength UO. In the 
strong coupling case, however, the localisation length decreases with increasing UO. The 
most important message we can get from figure 5 is that the weak interchain coupling 
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generally increases the localisation length of the quasi-iD disordered system even if the 
interchain hopping matrix element is a random variable. 

4. Conclusion 

We have presented a renormalisation group (RG) method for calculating the localisation 
lengths of coupled chains. The method is applicable for systems with various kinds of 
disorder. In order to investigate the effects of weak interchain coupling on the local- 
isation of electrons in quasi-iD disordered systems, we have calculated the localisation 
lengths of a two-chain system using the RG method. Our results are mostly for the weak 
interchain coupling limit. For the case in which the two chains have the same disordered 
strength, i.e. W1 = W2, the localisation length is drastically increased by the weak 
interchain coupling, even if the interchain hopping matrix element is a random variable. 
The case in which the two chains have different disorder strengths, i.e. W1 # W2, 
provides a more interesting effect of interchain coupling. It is found that the localisation 
length increases with increasing weak interchain coupling only in the parameter region 
W1 = W2 whereas the localisation length decreases as the interchain coupling increases 
in the parameter regions W1 %- W2 and W1 < W2. 
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